基本原理
微波是一种电磁波,电磁波包括电场和磁场,电场使带电粒子开始运动而具有一种力,由于带电粒子的运动从而使极化粒子进一步极化,微波的电和磁部分的相关的力方向快速变化,从而产生摩擦使其自身温度升高。许多有机反应物不能直接明显地吸收微波,但将高强度短脉冲微波辐射聚焦到含有某种“物质”(如铁磁性金属)的固体催化剂床表面上,由于表面金属点位与微波能的强烈作用,微波能将被转变热,从而使某些表面点位选择性地被很快加热至很高温度。尽管反应器中的物料不会被微波直接加热,但当它们与受激发的表面点位接触时可发生反应。
微波诱导催化反应的催化剂和载体
微波诱导催化反应实质上是微波首先作用于催化剂或其载体,使其迅速升温而产生活性点位,当反应物或载化都可以用于微波诱导催化反应的,只有那些可能被微波激活的催化剂和载体才能用于微波诱导催化反应。对于金属催化剂,能与微波发生强相互作用的主要是那些铁磁性金属,如镍、钴、铁等。对于金属氧化物,则视组分和结构不同而有很大差别;对于S区金属氧化物,不存在变价情况,则对微波是透明的。对于P区金属氧化物和过渡金属氧化物,存在变价现象,则它们对微波是不透明的,即吸收微波的能力随组分和结构而不同[4]。有人曾对过渡金属和P区金属的氧化物与微波之间的相互作用作过较深的研究[5]。把金属氧化物分成3类:第1类是高损耗物质,它们是一些含有变价元素的金属氧化物,如NI2O3,MNO2,Co3O4等,在微波场中有很高的活性。第2类是在微波场中辐射一段时间后才开始急剧升温,如Fe2O3,CdO,V2O5等。第3类低损耗物质,第3类低损耗物质,如AL2O3,TiO2,ZnO,PbO,La2O3,Y2O3,ZrO2,Nb2O5等。显然,第1类金属氧化物最适宜作微波诱导催化反应的催化剂,第3类金属氧化物宜作载体。